tanya dewa

tanya dewa

Minggu, 02 Oktober 2011

nuklir

Apa itu Nuklir?
Nuklir adalah sebuah atom yang tidak memiliki inti. Bahan dasar pembuatan nuklir adalah Uranium-235 (92U235) yang merupakan isotop dari Uranium-238 (92U238).

Spoiler for Gambar 1:

Uranium-235

Spoiler for Gambar 2:

Uranium-238 dengan kemurnian tinggi


Ada dua macam reaksi pada nuklir yaitu reaksi fisi (pembelahan inti) dan reaksi fusi (penggabungan inti). Pada reaksi fisi, inti atom akan pecah menjadi inti-inti yang lebih kecil. Secara eksperimen hal ini dapat dijelaskan melalui penembakan unsur U235 dengan partikel neutron termik (partikel neutron yang bergerak sangat lambat). Saat partikel neutron ini menembus inti Uranium maka inti tersebut akan tereksistasi dan menjadi tidak
stabil dan akan kehilangan bentuk asalnya. Inti akan membelah menjadi unsur-unsur yang lebih kecil dengan melepaskan energi dalam bentuk panas, sekaligus melepas 2-3 neutron. Saat inti mengalami perubahan bentuk, inti memancarkan radiasi-radiasi alfa, beta, dan gamma.

Fisi Nuklir
Dalam fisika, fisi nuklir adalah sebuah proses di mana terjadi pembelahan inti atom berat akibat ditumbukkan oleh neutron, pembelahan ini menghasilkan energi, inti atom yang lebih ringan, neutron tambahan dan photon dalam bentuk sinar gamma.

Reaksi-reaksi fisi yang dikenal baik
Produk dari reaksi fisi uranium, bervariasi, menghasilkan atom-atom yang bermassa lebih kecil, seperti: Ba , Kr , Zr , Te , Sr , Cs , I , La dan Xe ,dengan massa atom sekitar 95 dan 135. Sedangkan, produk dari reaksi fisi plutonium, mempunyai massa atom sekitar 100 dan 135.
Rata-rata reaksi fisi pada Uranium-235 (U-235) dan Plutonium-239 (Pu-239) yang disebabkan oleh neutron.
Spoiler for Gambar 3:

Plutonium-239

Spoiler for Gambar 4:

Visualisasi dari pembelahan atom Uranium dalam reaksi fisi nuklir


Fusi Nuklir
Dalam fisika, fusi nuklir (reaksi termonuklir) adalah sebuah proses saat dua inti atom bergabung, membentuk inti atom yang lebih besar dan melepaskan energi. Fusi nuklir adalah sumber energi yang menyebabkan bintang bersinar, dan Bom Hidrogen meledak. Senjata nuklir adalah senjata yang menggunakan prinsip reaksi fisi nuklir dan fusi nuklir.
Proses ini membutuhkan energi yang besar untuk menggabungkan inti nuklir, bahkan elemen yang paling ringan, hidrogen. Tetapi fusi inti atom yang ringan, yang membentuk inti atom yang lebih berat dan neutron bebas, akan menghasilkan energi yang lebih besar lagi dari energi yang dibutuhkan untuk menggabungkan mereka -- sebuah reaksi eksotermik yang dapat menciptakan reaksi yang terjadi sendirinya.
Energi yang dilepas di banyak reaksi nuklir lebih besar dari reaksi kimia, karena energi pengikat yang mengelem kedua inti atom jauh lebih besar dari energi yang menahan elektron ke inti atom.
Contoh, energi ionisasi yang diperoleh dari penambahan elektron ke hidrogen adalah 13.6 elektronvolt --> lebih kecil satu per sejuta dari 17 MeV yang dilepas oleh reaksi D-T
Spoiler for Gambar 5:

Reaksi fusi deuterium-tritium (D-T) dipertimbangkan sebagai proses yang paling menjanjikan dalam memproduksi tenaga fusi.


E=mc²
Rumus ini dikenal dalam ilmu fisika sebagai rumus yang sering dikenal dan sangat penting dalam menjelaskan persamaan nilai antara energi (E) dan massa (m), yang disetarakan secara langsung melalui konstanta kuadrat laju cahaya dalam vakum (c²) ini. Rumus ini juga digunakan untuk mengukur besarnya energi yang dihasilkan dalam reaksi nuklir. Perubahan massa isotop sebelum dan sesudah reaksi nuklir diperhitungkan. Dimana jumlah massa yang hilang sesudah reaksi nuklir (Δm) dikalikan dengan kuadrat kecepatan cahaya, hasilnya sama dengan energi yang dilepaskan dalam reaksi nuklir tersebut
Spoiler for Gambar 6:


Reaksi Nuklir
Dalam fisika nuklir, sebuah reaksi nuklir adalah sebuah proses di mana dua nuklei atau partikel nuklir bertubrukan, untuk memproduksi hasil yang berbeda dari produk awal. Pada prinsipnya sebuah reaksi dapat melibatkan lebih dari dua partikel yang bertubrukan, tetapi kejadian tersebut sangat jarang. Bila partikel-partikel tersebut bertabrakan dan berpisah tanpa berubah (kecuali mungkin dalam level energi), proses ini disebut tabrakan dan bukan sebuah reaksi.
Dikenal dua reaksi nuklir, yaitu reaksi fusi nuklir dan reaksi fisi nuklir. Reaksi fusi nuklir adalah reaksi peleburan dua atau lebih inti atom menjadi atom baru dan menghasilkan energi, juga dikenal sebagai reaksi yang bersih. Reaksi fisi nuklir adalah reaksi pembelahan inti atom akibat tubrukan inti atom lainnya, dan menghasilkan energi dan atom baru yang bermassa lebih kecil, serta radiasi elektromagnetik. Reaksi fusi juga menghasilkan radiasi sinar alfa, beta dan gamma yang sagat berbahaya bagi manusia.
Contoh reaksi fusi nuklir adalah reaksi yang terjadi di hampir semua inti bintang di alam semesta. Senjata bom hidrogen juga memanfaatkan prinsip reaksi fusi tak terkendali. Contoh reaksi fisi adalah ledakan senjata nuklir dan pembangkit listrik tenaga nuklir.
Unsur yang sering digunakan dalam reaksi fisi nuklir adalah Plutonium dan Uranium (terutama Plutonium-239, Uranium-235), sedangkan dalam reaksi fusi nuklir adalah Lithium dan Hidrogen (terutama Lithium-6, Deuterium, Tritium).
Spoiler for Gambar 7:

Reaksi fusi antara Lithium-6 dan Deuterium yang menghasilkan 2 atom Helium-4.

PLTN
Pembangkit Listrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik.
PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari). Daya yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya 600-1200 MWe.
Hingga saat ini, terdapat 442 PLTN berlisensi di dunia [1] dengan 441 diantaranya beroperasi di 31 negara yang berbeda. Keseluruhan reaktor tersebut menyuplai 17% daya listrik dunia.
Spoiler for Gambar 8:

PLTN

Reaktor Nuklir
Reaktor nuklir adalah suatu tempat atau perangkat yang digunakan untuk membuat, mengatur, dan menjaga kesinambungan reaksi nuklir berantai pada laju yang tetap. Berbeda dengan bom nuklir, yang reaksi berantainya terjadi pada orde pecahan detik dan tidak terkontrol.
Reaktor nuklir digunakan untuk banyak tujuan. Saat ini, reaktor nuklir paling banyak digunakan untuk membangkitkan listrik. Reaktor penelitian digunakan untuk pembuatan radioisotop (isotop radioaktif) dan untuk penelitian. Awalnya, reaktor nuklir pertama digunakan untuk memproduksi plutonium sebagai bahan senjata nuklir.
Saat ini, semua reaktor nuklir komersial berbasis pada reaksi fisi nuklir, dan sering dipertimbangkan masalah risiko keselamatannya. Sebaliknya, beberapa kalangan menyatakan bahwa pembangkit listrik tenaga nuklir merupakan cara yang aman dan bebas polusi untuk membangkitkan listrik. Daya fusi merupakan teknologi ekperimental yang berbasis pada reaksi fusi nuklir. Ada beberapa piranti lain untuk mengendalikan reaksi nuklir, termasuk di dalamnya pembangkit thermoelektrik radioisotop dan baterai atom, yang membangkitkan panas dan daya dengan cara memanfaatkan peluruhan radioaktif pasif, seperti halnya Farnsworth-Hirsch fusor, di mana reaksi fusi nuklir terkendali digunakan untuk menghasilkan radiasi neutron.

Jenis-jenis PLTN
1. Reaktor Fisi
Reaktor daya fisi membangkitkan panas melalui reaksi fisi nuklir dari isotop fisil uranium dan plutonium.
Selanjutnya reaktor daya fisi dikelompokkan lagi menjadi:
a. Reaktor thermal menggunakan moderator neutron untuk melambatkan atau me-moderate neutron sehingga mereka dapat menghasilkan reaksi fissi selanjutnya. Neutron yang dihasilkan dari reaksi fisi mempunyai energi yang tinggi atau dalam keadaan cepat, dan harus diturunkan energinya atau dilambatkan (dibuat thermal) oleh moderator sehingga dapat menjamin kelangsungan reaksi berantai. Hal ini berkaitan dengan jenis bahan bakar yang digunakan reaktor thermal yang lebih memilih neutron lambat ketimbang neutron cepat untuk melakukan reaksi fisi.
b. Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. Karena reaktor cepat menggunkan jenis bahan bakar yang berbeda dengan reaktor thermal, neutron yang dihasilkan di reaktor cepat tidak perlu dilambatkan guna menjamin reaksi fisi tetap berlangsung. Boleh dikatakan, bahwa reaktor thermal menggunakan neutron thermal dan reaktor cepat menggunakan neutron cepat dalam proses reaksi fisi masing-masing.
c. Reaktor subkritis menggunakan sumber neutron luar ketimbang menggunakan reaksi berantai untuk menghasilkan reaksi fisi. Hingga 2004 hal ini hanya berupa konsep teori saja, dan tidak ada purwarupa yang diusulkan atau dibangun untuk menghasilkan listrik, meskipun beberapa laboratorium mendemonstrasikan dan beberapa uji kelayakan sudah dilaksanakan.
Spoiler for Gambar 9:

Bagian-bagian Reaktor Atom Fisi


2. Reaktor thermal
a. Light water reactor (LWR)
- Boiling water reactor (BWR)
- Pressurized water reactor (PWR)
- SSTAR, a sealed, reaktor untuk jaringan kecil, mirip PWR
b. Moderator Grafit:
- Magnox
- Advanced gas-cooled reactor (AGR)
- High temperature gas cooled reactor (HTGR)
- RBMK
- Pebble bed reactor (PBMR)
c. Moderator Air berat:
- SGHWR
- CANDU
Spoiler for Gambar 10:

Reaktor thermal tipe PWR

Spoiler for Gambar 11:

Reaktor thermal tipe BWR

Spoiler for Gambar 12:

Bradwell Magnox Nuclear Power Station

3.Reaktor cepat
Meski reaktor nuklir generasi awal berjenis reaktor cepat, tetapi perkembangan reaktor nuklir jenis ini kalah dibandingkan dengan reaktor thermal.
Keuntungan reaktor cepat diantaranya adalah siklus bahan bakar nuklir yang dimilikinya dapat menggunakan semua uranium yang terdapat dalam urainum alam, dan juga dapat mentransmutasikanradioisotop yang tergantung di dalam limbahnya menjadi material luruh cepat. Dengan alasan ini, sebenarnya reaktor cepat secara inheren lebih menjamin kelangsungan ketersedian energi ketimbang reaktor thermal. Lihat juga reaktor fast breeder. Karena sebagian besar reaktor cepat digunakan untuk menghasilkan plutonium, maka reaktor jenis ini terkait erat dengan proliferasi nuklir.
Lebih dari 20 purwarupa (prototype) reaktor cepat sudah dibangun di Amerika Serikat, Inggris, Uni Sovyet, Perancis, Jerman, Jepang, India, dan hingga 2004 1 unit reaktor sedang dibangun di China. Berikut beberapa reaktor cepat di dunia:
EBR-I, 0.2 MWe, AS, 1951-1964.
Dounreay Fast Reactor, 14 MWe, Inggris, 1958-1977.
Enrico Fermi Nuclear Generating Station Unit 1, 94 MWe, AS, 1963-1972.
EBR-II, 20 MWe, AS, 1963-1994.
Phénix, 250 MWe, Perancis, 1973-sekarang.
BN-350, 150 MWe plus desalination, USSR/Kazakhstan, 1973-2000.
Prototype Fast Reactor, 250 MWe, Inggris, 1974-1994.
BN-600, 600 MWe, USSR/Russia, 1980-sekarang.
Superphénix, 1200 MWe, Perancis, 1985-1996.
FBTR, 13.2 MWe, India, 1985-sekarang.
Monju, 300 MWe, Jepang, 1994-sekarang.
PFBR, 500 MWe, India, 1998-sekarang.
Spoiler for Gambar 13:

Dounreay Fast Reactor

Spoiler for Gambar 14:

Monju Reactor

NB: Daya listrik yang ditampilkan adalah daya listrik maksimum, tanggal yang ditampilkan adalah tanggal ketika reaktor mencapai kritis pertama kali, dan ketika reaktor kritis untuk terakhir kali bila reaktor tersebut sudah di dekomisi (decommissioned).
4. Reaktor Fusi
Fusi nuklir menawarkan kemungkinan pelepasan energi yang besar dengan hanya sedikit limbah radioaktif yang dihasilkan serta dengan tingkat keamanan yang lebih baik. Namun demikian, saat ini masih terdapat kendal-kendala bidang keilmuan, teknik dan ekonomi yang menghambat penggunaan energi fusi guna pembangkitan listrik. Hal ini masih menjadi bidang penelitian aktif dengan skala besar seperti dapat dilihat di JET, ITER, dan Z machine.

Senjata Nuklir
Senjata nuklir adalah senjata yang mendapat tenaga dari reaksi nuklir dan mempunyai daya pemusnah yang dahsyat - sebuah bom nuklir mampu memusnahkan sebuah kota. Senjata nuklir telah digunakan hanya dua kali dalam pertempuran - semasa Perang Dunia II oleh Amerika Serikat terhadap kota-kota Jepang, Hiroshima dan Nagasaki.Pada masa itu daya ledak bom nuklir yg dijatuhkan di Hiroshima dan Nagasaki sebesar 20 kilo(ribuan) ton TNT. Sedangkan bom nuklir sekarang ini berdaya ledak lebih dari 70 mega(jutaan) ton TNT
Negara pemilik senjata nuklir yang dikonfirmasi adalah Amerika Serikat, Rusia, Britania Raya (Inggris), Perancis, Republik Rakyat Cina, India, Korea Utara dan Pakistan. Selain itu, negara Israel dipercayai mempunyai senjata nuklir, walaupun tidak diuji dan Israel enggan mengkonfirmasi apakah memiliki senjata nuklir ataupun tidak. Lihat daftar negara dengan senjata nuklir lebih lanjut.
Bentuk bom nuklir yang dijatuhkan di Hiroshima dan Nagasaki
Senjata nuklir kini dapat dilancarkan melalui berbagai cara, seperti melalui pesawat pengebom, peluru kendali, peluru kendali balistik, dan Peluru kendali balistik jarak benua.
Spoiler for Gambar 15:

Fat Man and Little Boy (Bom yg dijatuhkan di Hiroshima dan Nagasaki)

Spoiler for Gambar 16:

R-36 (ICBM, milik Rusia)

Spoiler for Gambar 17:

RT-2UTTH Topol M / SS-27 (ICBM, milik Rusia)


Dampak Nuklir pada Rakyat dan Lingkungan
Reaktor nuklir sangat membahayakan dan mengancam keselamatan jiwa manusia. Radiasi yang diakibatkan oleh reaktor nuklir ini ada dua. Pertama, radiasi langsung, yaitu radiasi yang terjadi bila radio aktif yang dipancarkan mengenai langsung kulit atau tubuh manusia. Kedua, radiasi tak langsung. Radiasi tak langsung adalah radiasi yang terjadi lewat makanan dan minuman yang tercemar zat radio aktif, baik melalui udara, air, maupun media lainnya.

Keduanya, baik radiasi langsung maupun tidak langsung, akan mempengaruhi fungsi organ tubuh melalui sel-sel pembentukannya. Organ-organ tubuh yang sensitif akan dan menjadi rusak. Sel-sel tubuh bila tercemar radio aktif uraiannya sebagai berikut: terjadinya ionisasi akibat radiasi dapat merusak hubungan antara atom dengan molekul-molekul sel kehidupan, juga dapat mengubah kondisi atom itu sendiri, mengubah fungsi asli sel atau bahkan dapat membunuhnya. Pada prinsipnya, ada tiga akibat radiasi yang dapat berpengaruh pada sel. Pertama, sel akan mati. Kedua, terjadi penggandaan sel, pada akhirnya dapat menimbulkan kanker, dan ketiga, kerusakan dapat timbul pada sel telur atau testis, yang akan memulai proses bayi-bayi cacat. Selain itu, juga menimbulkan luka bakar dan peningkatan jumlah penderita kanker (thyroid dan cardiovascular) sebanyak 30-50% di Ukrania, radang pernapasan, dan terhambatnya saluran pernapasan, juga masalah psikologi dan stres yang diakibatkan dari kebocoran radiasi.
Ada beberapa bahaya laten dari PLTN yang perlu dipertimbangkan. Pertama, kesalahan manusia (human error) yang bisa menyebabkan kebocoran, yang jangkauan radiasinya sangat luas dan berakibat fatal bagi lingkungan dan makhluk hidup. Kedua, salah satu yang dihasilkan oleh PLTN, yaitu Plutonium memiliki hulu ledak yang sangat dahsyat. Sebab Plutonium inilah, salah satu bahan baku pembuatan senjata nuklir. Kota Hiroshima hancur lebur hanya oleh 5 kg Plutonium. Ketiga, limbah yang dihasilkan (Uranium) bisa berpengaruh pada genetika. Di samping itu, tenaga nuklir memancarkan radiasi radio aktif yang sangat berbahaya bagi manusia.



 

Tidak ada komentar:

Posting Komentar